Oxford Cambridge and RSA

GCE

Further Mathematics A

Y535/01: Additional Pure Mathematics
Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations and abbreviations

Annotation in scoris	Meaning
\checkmark and \boldsymbol{x}	Benefit of doubt
BOD	Follow through
FT	Ignore subsequent working
ISW	Method mark awarded 0, 1
M0, M1	Accuracy mark awarded 0, 1
A0, A1	Independent mark awarded 0, 1
B0, B1	Special case
SC	Omission sign
^	Misread
MR	
Highlighting	
	Meaning
Other abbreviations in mark scheme	Mark for explaining a result or establishing a given result
E1	Mark dependent on a previous mark, indicated by *
dep*	Correct answer only
cao	Or equivalent
oe	Rounded or truncated
rot	Seen or implied
soi	Without wrong working
www	Answer given
AG	Anything which rounds to
awrt	By Calculator
BC	This question included the instruction: In this question you must show detailed reasoning.
DR	

Subject-specific Marking Instructions for AS Level Further Mathematics A

The following types of marks are available.
M
A suitable method has been selected and applied in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

A
Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

B

Mark for a correct result or statement independent of Method marks
E
Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.
Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.

The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only - differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.
Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question

Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km , when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for g. E marks will be lost except when results agree to the accuracy required in the question.

Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.

For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
j
If in any case the scheme operates with considerable unfairness consult your Team Leader.

Question		Answer	Marks	AOs	Guidance	
1	(a)	$N=111011100111002$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	1.1	BC	
	(b)	$\begin{aligned} & 7_{10}=111_{2} \\ & 11101110011100_{2}=100010000100_{2} \times 111_{2} \\ & \Rightarrow 7 \mid \mathrm{N} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & 1.1 \\ & 2.1 \end{aligned}$	soi any recognition N is made up of blocks of 111 Result and conclusion (FT blocks of 111)	
		Alternative method $\begin{aligned} N & =\left(2^{2}+2^{3}+2^{4}\right)+\left(2^{7}+2^{8}+2^{9}\right)+\left(2^{11}+2^{12}+2^{13}\right) \text { and working } \bmod 7 \\ & \equiv(4+1+2)+(2+4+1)+(4+1+2)(\bmod 7) \equiv 0 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$			
			[2]			
2	(a)	Limit $=4$	$\begin{aligned} & \hline \text { B1 } \\ & \text { [1] } \end{aligned}$	1.1	BC	
	(b)	Setting $b_{n+1}=b_{n}=9$ throughout Solving $9=\sqrt{9}+\frac{k}{\sqrt{9}}$ $k=18$	M1 M1 A1	$\begin{aligned} & \text { 3.1a } \\ & \text { 1.1a } \\ & 1.1 \end{aligned}$	soi BC or by inspection	
		Alternative method Search method for $b_{n+1}=\sqrt{b_{n}}+\frac{k}{\sqrt{b_{n}}}$ with various k 's Evidence of systematic approach (e.g. $k=9 \rightarrow 6.11 \ldots, k=20 \rightarrow 9.56 \ldots$) $k=18$	$\begin{gathered} \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$			
			[3]			
3	(a)	\mathbf{x} and \mathbf{y} are parallel $\mathbf{x} \times \mathbf{y}=x y \sin \theta \mathbf{u}$ (where \mathbf{u} is a unit vector) $=0 \Rightarrow($ since $x, y \neq 0) \sin \theta=0 \Rightarrow \theta=0($ or $\pi)$ and $\mathbf{x} \\| \mathbf{y}$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \\ & {[2]} \end{aligned}$	$\begin{aligned} & 1.2 \\ & 2.4 \end{aligned}$		
	(b)	$\mathbf{r}=\mathbf{a}+t \mathbf{d} \Rightarrow \mathbf{r}-\mathbf{a}=t \mathbf{d} \Leftrightarrow(\mathbf{r}-\mathbf{a}) \\| \mathbf{d}$ Then, by $(\mathbf{a}),(\mathbf{r}-\mathbf{a}) \times \mathbf{d}=\mathbf{0}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{gathered} 2.1 \\ 2.2 \mathrm{a} \end{gathered}$	(Since one vector a multiple of the other) No statement required that neither vector is zero Condone lack of \Leftrightarrow-ness to explanation	
		Alternative method $\mathbf{r}=\mathbf{a}+t \mathbf{d} \Rightarrow \mathbf{r}-\mathbf{a}=t \mathbf{d}$ and $\times \mathbf{d}$ both sides Conclusion follows from $\mathbf{d} \times \mathbf{d}=\mathbf{0}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$			
			[2]			

Question		Answer	Marks ${ }^{\text {AOs }}$		Guidance
4	-	$u_{n+1}-2 u_{n}=n^{2}$ Complementary Soln. is $u_{n}=A \times 2^{n}$ For Particular Soln., try $u_{n}=a n^{2}+b n+c$ Substg. into given r.r. for both u_{n+1} and u_{n} $a n^{2}+2 a n+a+b n+b+c-2\left(a n^{2}+b n+c\right)=n^{2}$ Comparing coeffts. $a=-1, b=-2, c=-3 \text { so that } \mathrm{PS} \text { is } u_{n}=-\left(n^{2}+2 n+3\right)$ General Soln. is $u_{n}=A \times 2^{n}-\left(n^{2}+2 n+3\right)$ Use of initial term to evaluate A $u_{1}=1=2 A-(1+2+3) \Rightarrow A=\frac{7}{2}$ and Soln. is $u_{n}=7 \times 2^{n-1}-\left(n^{2}+2 n+3\right)$ oe	B1 M1 M1 M1 A1 B1 M1 A1	$\begin{gathered} 1.1 \\ 2.1 \\ 1.1 \\ 1.1 \\ 2.2 \mathrm{a} \\ 1.1 \\ 1.1 \mathrm{a} \\ \\ 1.1 \end{gathered}$	FT cao If all correct, the final A mark may be awarded at the previous line
		Alternative method $\begin{aligned} & u_{n}=A \times 2^{n}+a n^{2}+b n+c \\ & \left\{u_{n}\right\}=\{1,3,10,29,74, \ldots\} \end{aligned}$ Setting up system of equations: $\begin{aligned} 1 & =2 A+a+b+c \\ 3 & =4 A+4 a+2 b+c \\ 10 & =8 A+9 a+3 b+c \\ 29 & =16 A+16 a+4 b+c \end{aligned}$ Solving system of equations $A=\frac{7}{2} \quad \text { and } \quad a=-1, b=-2, c=-3$	B1 M1 M1 M1 M1 M1 A1 A1		CS, PS Using correct first four (or five?) terms in system of equations M1 for at least two; M2 for all four (or five?) BC
			[8]		

	Question	Answer	Marks	AOs	Guidance
5		Area $\triangle O A B=\frac{1}{2}\|\mathbf{a} \times \mathbf{b}\|$ $\begin{aligned} & \text { where } \mathbf{a} \times \mathbf{b}=\left(\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right) \times\left(\begin{array}{l} 2 \\ 1 \\ 2 \end{array}\right)=\left(\begin{array}{r} 2 \\ 2 \\ -3 \end{array}\right) \\ & =\frac{1}{2} \sqrt{17} \end{aligned}$ Area $\triangle O A C=$ Area $\triangle O B C=\frac{1}{2} \sqrt{17}$ similarly Area $\triangle A B C=\frac{1}{2}\|(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})\|$ e.g. $\begin{aligned} & \quad \text { where }(\mathbf{b}-\mathbf{a}) \times(\mathbf{c}-\mathbf{a})=\left(\begin{array}{r} 1 \\ -1 \\ 0 \end{array}\right) \times\left(\begin{array}{r} 1 \\ 0 \\ -1 \end{array}\right)=\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right) \\ & =\frac{1}{2} \sqrt{3} \end{aligned}$ Surface area of T is then $3 \times \frac{1}{2} \sqrt{17}+\frac{1}{2} \sqrt{3}$ $=\frac{1}{2} \sqrt{3}(\sqrt{3} \sqrt{17}+1)=\frac{1}{2} \sqrt{3}(\sqrt{51}+1)$	M1	3.1a	Use of vector product $\mathbf{o e}$ for one simple Δ are
			B1	1.1	A correct, relevant vector product calculation
			A1	1.1	First correct simple Δ area (exact answer justified)
			B1	1.1	$\mathbf{a} \times \mathbf{c}=\left(\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right) \times\left(\begin{array}{l} 2 \\ 2 \\ 1 \end{array}\right)=\left(\begin{array}{r} -2 \\ 3 \\ -2 \end{array}\right), \mathbf{b} \times \mathbf{c}=\left(\begin{array}{l} 2 \\ 1 \\ 2 \end{array}\right) \times\left(\begin{array}{l} 2 \\ 2 \\ 1 \end{array}\right)=\left(\begin{array}{r} -3 \\ 2 \\ 2 \end{array}\right)$
			M1	1.1a	Final, complicated Δ area attempted
					$\mathbf{c}-\mathbf{b}=\left(\begin{array}{r} 0 \\ 1 \\ -1 \end{array}\right)$
			A1	1.1	(First B1 can be earned for this area if not otherwise) Must follow from correct vector product
			M1	3.1a	Sum of four calculated Δ areas
			$\begin{aligned} & \text { A1 } \\ & {[8]} \\ & \hline \end{aligned}$	1.1	AG fully legitimately obtained
		Note that $O A B, O A C, O B C$ are congruent isosceles $\Delta \mathrm{s}$ with sides $3,3, \sqrt{2}$, while $A B C$ is an equilateral Δ of side $\sqrt{2}$			

Question			Answer	Marks	AOs	Guidance
6	(a)		DR (Working mod 101 throughout) $\begin{aligned} 16 x \equiv 5 & \equiv 106 \ldots \\ & \equiv 1520 \end{aligned}$ Explanation that we can divide by 16 since $\operatorname{hcf}(16,101)=1$ $\Rightarrow x \equiv 95(\bmod 101)$ or $x=101 n+95$ or any other valid form	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \\ & \text { A1 } \end{aligned}$	$\begin{array}{r} 1.1 \\ 2.1 \\ 2.4 \\ 2.2 \mathrm{a} \\ \hline \end{array}$	Adding multiples of 101 at any stage Finding a multiple of 16 Explained appropriately at any stage (Use of $\operatorname{hcf}(16,101)=1$ to justify other attributes E0)
			Alternative method I Done in stages e.g. $16 x \equiv 5 \equiv 106 \ldots \Rightarrow 8 x \equiv 53$ $\Rightarrow 8 x \equiv 154 \Rightarrow 4 x \equiv 77 \equiv 178$ $\Rightarrow 2 x \equiv 89 \equiv 190 \Rightarrow x \equiv 95(\bmod 101)$ etc. Explanation that we can divide by 2 since $\operatorname{hcf}(2,101)=1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$		Must be evidence of repeated divisions (correct \geq twice) Explained appropriately at any stage (once will suffice)
			Alternative method II Using reciprocal/inverse Finding $16^{-1}(\bmod 101)=19$ Multiplying throughout $16 x \equiv 5(\bmod 101)$ by $19 \Rightarrow x \equiv 95(\bmod 101)$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 A1 } \end{aligned}$		
				[4]		
	(b)	(i)	$\begin{aligned} \text { DR } 95 x \equiv 6 \Rightarrow & -6 x \equiv 6 \\ & \Rightarrow x \equiv-1(\bmod 101) \text { oe } \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{gathered} \hline \text { 3.1a } \\ 1.1 \end{gathered}$	
			$\begin{aligned} & \text { Alternative method I Using (a) } \\ & \text { Multg. throughout by } 16 \Rightarrow 5 x \equiv 96(\bmod 101) \\ & \text { Multg. throughout by } 81 \Rightarrow 405 x \equiv x \equiv 100(\bmod 101) \end{aligned}$	M1 A1		Or by noting that this is $5 x \equiv-5(\bmod 101)$ Complete method NB $81 \times 5=405 \equiv 1(\bmod 101)$
			Alternative method II Using reciprocal/inverse Finding $95^{-1}(\bmod 101)=84$ Multg. throughout by 84 $\Rightarrow x \equiv 100(\bmod 101)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$		Complete method NB $84 \equiv 16 \times 81(\bmod 101)$
				[2]		
	(b)	(ii)	Using part (a)'s answer, $95 \times 16 \equiv 5(\bmod 101)$ $\Rightarrow x \equiv 16(\bmod 101)$	M1 A1 [2]	$\begin{gathered} 2.2 \mathrm{a} \\ 1.1 \end{gathered}$	Mark may be earned by solving the linear congruence from scratch; must be a complete method

Question \quad Answer			Marks	AOs	Guidance
8	(a)	$\begin{aligned} \overrightarrow{P Q}=\mathbf{q}- & \mathbf{p}=\left(\begin{array}{c} 8 q-4 p+3 \\ q-p+5 \\ 4 q-3 p+4 \end{array}\right) \\ z=(P Q)^{2}= & (8 q-4 p+3)^{2}+(q-p+5)^{2}+(4 q-3 p+4)^{2} \\ = & \left(64 q^{2}+16 p^{2}+9-64 p q-24 p+48 q\right) \\ & +\left(q^{2}+p^{2}+25-2 p q-10 p+10 q\right) \\ & +\left(16 q^{2}+9 p^{2}+16-24 p q-24 p+32 q\right) \\ = & 81 q^{2}+26 p^{2}+50-90 p q-58 p+90 q \end{aligned}$	M1 M1 A1 [3]	3.3 1.2 1.1	\pm Attempted soi Clear attempt to square at least two three-term brackets AG from fully supported (visible) working
	(b)	$\frac{\partial z}{\partial p}=52 p-90 q-58 \quad \frac{\partial z}{\partial q}=162 q-90 p+90$ Setting both p.d.s to zero and solving $\begin{gathered}26 p-45 q=29 \\ 45 p-81 q=45\end{gathered}$ simultaneously $p=4, q=\frac{5}{3}$	B1 B1 M1 A1 [4]	1.1 1.1 3.1a 1.1	BC
	(c)	(Diagram may consist of two skew lines; P on one, Q on the other.) Moving P, Q in "opposite" directions along their lines gives z indefinitely large, hence stationary point is not a maximum Symmetric properties of P, Q (i.e. p, q) gives both max or both min so not a saddle-point Alternative method I $z-p-q$ (\cup-shaped) paraboloid OR $z-p$ AND $z-q$ (\cup-shaped) parabola drawn Noting surface has a minimum for each section (≥ 2 shown) Alternative method II Skew lines have a minimum distance, so z must have a minimum There is only one stationary point in (b), so it must be this minimum and not either a max. or a saddle point.	E1 E1	3.4 3.4	Or $z-p-q$ (\cup-shaped) paraboloid drawn Or $z-p$ AND $z-q$ (\cup-shaped) parabola drawn
			$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		
			$\begin{gathered} \text { E1 } \\ \text { E1 } \end{gathered}$		
			[2]		
	(d)	Substg. back $p=4, q=\frac{5}{3}$ into expression for z $\Rightarrow z=9$ and Sh. Dist. $=3(\mathrm{~m})$	M1 A1 [2]	$\begin{aligned} & \text { 1.1a } \\ & \text { 2.2a } \end{aligned}$	cao

Question		Answer	Marks	AOs		
	(e)		e.g. Because they are modelled as spheres, for any value of p and q the distance between them will simply be less than in the original model. the shortest distance is now 3 $-1=2(\mathrm{~m})$	$\mathbf{M 1}$	$\mathbf{3 . 5 c}$	

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

[^0]
[^0]: Oxford Cambridge and RSA Examinations
 is a Company Limited by Guarantee
 Registered in England
 Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
 Registered Company Number: 3484466
 OCR is an exempt Charity
 OCR (Oxford Cambridge and RSA Examinations)
 Head office
 Telephone: 01223552552
 Facsimile: 01223552553

